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SIGNIFICANCE AND EXPLANATION

A variety of heat-transfer problems involving a change of phase, such

as melting of ice, fusion of metals, solidification of alloys, involves

basically two facts: a diffusion process (de~scribed for example by the heat

equation) and a description of the progressive change of the region where the

process takes place. Such phenomena can be formulated as free-boundary pro-

blems which are often treated mathematically using variational inequalities.

The heat equation describes many heat transfer problems only in the crudest

way.

In this paper we propose to study such processes by using a non-linear,

more refined model of heat-conduction. We develop a mathematical theory for

a convenient class of variational inequalities and apply it to study problems

involving a change of phase (for example a Stefan problem) where the alter-

native model mentioned above is employed.

us Il. I: #'i

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.



A PSEUDO-PARABOLIC VARIATIONAL INEQUALITY AND STEFAN PROBLEM

E. DiBenedetto and R. E. Showalter (I )

1. Introduction.

Let A and B be (possibly multi-valued) maximal monotone operators and let

C be a non-empty closed convex set in the real Hilbert space V. We shall give

existence and uniqueness results for evolution inequalities (formally) of the form

(l.l.a) u(t) e C: (L(Au(t)) +Bu(t)-f(t),v-u(t V > 0 , v c C , 0 < t < T

(l.l.b) (Au(0)-v 0 , v-u(O))v ! 0 , v e C ,

where f e L 2(0,T;V) and v0 e A(u0) are given. In Section 2 we introduce a new

notion of weak solution of (1.1) and verify uniqueness when A is linear self-ed-

joint and B is strictly monotone. Existence of a weak solution is proved in

Section 3 when A is a (single-valued) function of the form "identity plus compact

operator", B is bounded, and A or B is a subgradient.

Variational inequalities of the form (1.1) are of interest on their own as

extensions of corresponding evolution equations of Sobolev type (where C= V). Early

work on such inequalities is described in [2]; we mention [6] specifically as a

source of examples of initial-boundary value problems for the pseudo-parabolic

partial differential equation

(1.2) 5(u-au) = k&u

with a > 0, k > 0. Such equations arise as models for diffusion, and they provide

an interesting alternative to the classical diffusion equation wherein a= 0. In

Section 4 we give an example of an initial-boundary-value problem consisting of a

highly nonlinear partial differential equation of pseudo-parabolic type whose

solution is subject to unilateral constraints. Existence and uniqueness results for

weak solutions follow from our abstract results on (1.1).

(')Department of Mathematics, RLM 8.100, The University of Texas, Austin, TX 78712

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



2.

A one-phase free-boundary problem of Stefan type for the equation (1.2) is

shown in Section 5 to lead to the variational inequality (1.1). This development

is parallel to that of the classical case a= 0 which is described, e.g., in [7].

The existence of a classical solution of a Stefan problem for (1.2) in one spatial

dimension was given in (91 by entirely different methods.

2. The Variational Inequality.

We denote by L 2(0,T;V) the Hilbert space of (Bochner) square-integrable

functions on the interval (0,T) with values in the Hilbert space V. Let

HI(O,T;V) denote the absolutely continuous V-valued functions v whose deriv-
dv2*

atives t belong to L 2(O,T;V). Denote the dual of V by V and recall the

natural identification L2(O,T;V) -L (0,T;V)*; thus we obtain the (dual) iden-

tification L 2(0,T;V) C- HI (o,T;V) * by restriction. The derivative

d2 (OT;V) is a bounded linear operator which determines the dual

operator L = - :L 2 'OT;V) * H1(0,T;V) * by the formula

T 2 1
(Lf,v)= -s (f(t),v'(t))vdt f e L (0,T;V) v e H (OT;V)

The restriction of Lf to V-valued test functions is the (distribution) derivative

df 1dt Moreover, for f e H (0,T;V) we have

dt"(fTvT)

(Lf,v) - v + (f(O),v(O))V (f(T)v(T)) v E H(,T;V)v L 2 (0,T;V) V V

Thus, we can regard "Lf+f(T)" as formally equivalent to the Cauchy operator

L + f (0) " .
dt

TI, A.A= l



3.

We shall use basic material on maximal monotone operators [1]. Specifically,

recall Ac V xV is monotone if ( x y1 c A for i-ul and 2 imply

(x1-x 2 s Yl-y2V 1 0, and strictly monotone if in addition equality holds only ifI

- x2  If (p: V + R U +c]is proper, convex and lower semicontinuous, its

subliradient defined by

69X _(u e V: (Uy-X)V S cp(y)-cp(x) for all y e V)

for x e V is maximal monotone. More specifically, if C is a non-empty, convex

and closed set in V, its indicator function

I(x) x iC

is pr~pjer, convex and lower semicontinuous, and we have u e 31 (x) if and only if

x eC: (u,y-x) 0 for all y eC

Thus, the subgradient of the indicator function provides a convenient method of

expressing the variational inequality.

Suppose we are given the pair A,B of maximal monotone operators on the

2
Hilbert space V, a closed convex subset C of V, f a L (0,T;V) and a pair

N o [u0 0 j1sA. Then a function u is called a strong solution of (1.1) if there

is a pair of functions v,w such that

uv e H 1(0, T;V) ; w e L 2(O,T;V)

(2.1.a) u(t) E C: d(t t t_~t x-u(t)) V 0 x e C

v(t) is A(u(t)) and w(t) c B(u(t)) for a.e. t c 10,T], and

(2.1.b) (V(O)-v0, X-u(6))v 0 x 6 C

j " Jil !I I
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Note that since u and v are continuous, C is closed in V and A is closed

in VxV, it follows that the inclusions u(t) e C and v(t) e A(u(t)) hold for

all t e [0,T]. Also, (2.1) can be restated as

(2.2.a) dv(t) + w(t) + a, (u(t)) 3 f(t)
dt C

v(t) e A(u(t)) and w(t) e B(u(t)) for a.e. t e [0,T] , and

(2.2.b) v(0) + aIc(u(O)) 3 vo

in terms of the indicator function.

We shall use a weak notion of solution in which it is not required that

1 1
v e H (0,T;V). Set K-(u 6 H (0,T;V): u(t) e C, 0 < t < T). Define a weak solution

of (1.1.) to be a function u for which there is a pair of functions v,w satisfying

u e K ; v,w L2 (0,T;V)

v(t) e A(u(t)) , w(t) e B(u(t)) , a.e. t e [0,T]

and for some g e A(u(T)) we have

(2.3) (Lv+w-f, -u)+ (, (T)-u(T))V > (vO , O (O)-u(O))V, e K

Note that if u is a strong solution then it is a weak solution with -=v(T).

Moreover we have the following elementary result.

t Theorem 1. Let A be continuous, linear, self-adjoint and monotone; let B be

strictly monotone. Then there is at most one weak solution.

Proof: Let u1  and u2 be weak solutions and let v1 , w1  and v2 w2 be the

corresponding selections from A(u1 ), B(u1 ), etc. By our assumptions on A we

have (after modification on a null set) vj=A(uj) C H (0,T;V) and WjmA(u (T))

for J-l,2. Thus we have
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(LAu I +w -f,u 2 -u I ) + (Au1 (T), u2 (T) -u 1 (T))V > (vO, u2 (0)-u 1 (0))V

(LAu 2 +w 2 -f, u-u 2 ) + (Au2 (T), u (T) -u2 (T))V > (v0 _ Ul(O)-u 2 (0))V

For any u e H1 (o,T;V) we have

(LAu,u) = l/2((Au(O),u(O))v-(Au(T),u(T))v)

so adding the two inequalities and applying this identity with u f u1 -u 2  gives

(Wl'W 2'2 u u2)L2(OV) + 1/2(Au(T),u(T))v + l/2(Au(O),u(O))v < 0

(w1w2  1-u)L (O,T;V)

Strict monotonicityof B shows uI = u2

Remarks. Without additional assumptions we should not expect uniqueness of the

selections v,w. For example, in the extreme case C=(O), (2.3) is vacuous and

we need only choose v,w e L 2(O,T;V) with v(t) e A(O) and w(t) c B(O) to ob-

tain a weak solution. At the other extreme, C =V, any weak solution gives a

dv 2
strong solution of the equation -+w= f in L (OT;V) with v(O)= v0  Even

dt

for equations, the current uniqueness proofs .require, e.g., A or B to be linear

self-adjoint. See [5).

3. Existence of a Weak Solution.

Our objective is to prove the following result on the existence of weak solutions

of (1.1). Note that each of our hypotheses concerns only one of the three sources of

nonlinearity in the problem; we have not placed.any "compatibility" conditions on the

operators A,B or the set C.

Theorem 2. Let C be a non-empty, closed and convex subset of the Hilbert space V.

Let A and B be maximal monotone operators on V and assume the following:

A. .



(i) A is a (single-valued) function which maps bounded sets in V into bounded

sets in U, where U is a Banach space compactly imbedded in V.

(ii) B maps bounded sets in V into bounded sets in V.

(iii) Either A = 6por B =Zkp, where cp: V + PR is a convex and lower-semicon-

tinuous function.

Then for each u 0 e C and f e £ (O,T;V) there is at least one pair u,w such

that

(3.l.a) ue K , w e L2(O,T;V) , w(t) e B(u(t)) , 0 < t < T

for Ii e K

and u (0) u 0 .

Remarks If in addition we had A(u) F_ Hi (O,T;V), then u would be a strong

solution of

(3.2) -(u(t)+A(u(t)))+w(t)+I WO~t) 3 f(t) a.e. t c 10,T]

This is (2.2.a) with A replaced by A +I.

Since we do have u e H 1(O,T;V) and u(0)= uO, it follows that (3.1.b) is

equivalent to

d33 !u+L u -,1u A u(),I()- T) A(o,1 (0u()V, I~ e K

Proof: We shall prove Theorem 2 in the following steps. First we approximate (3.2)

(and, hence, (3.1)) by replacing 61I by its Lipschitz-continuous Yoshida approxi-C

mation 61 > 0; the resulting equation has a solution u C by (5 1. Then we
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* establish estimates on (u ), deduce the existence of a weak limit u=lim(u )
£E

and finally show u is a weak solution of (3.1).

The approximation. As an approximation of the indicator function IC  we take

I (x) = (2E) -l I (x) 11 , e > 0 , x e V

Its Frechet derivative is 0I(x) =E (x-PC(x)), where PC is the orthogonal pro-
CE

jection onto C, and it is monotone and Lipschitz continuous. Thus B+ I is

maximal monotone and we obtain from [ 5 ) the existence of a pair u E H (0,T;V),
2€

w e L 2(OT;V) for each c > 0 satisfying

d-(u, (t) + A u (t)) + w. (t) + IEc (u. (t)) f (t),

(3.4)
w (t) c B(u (t)) , a.e. t [ O,T]

and u (0)-u . This approximation (3.4) is strongly suggested by (3.2).

The estimates. Consider the two cases in (iii).

Case A=6(p: Take the scalar product of (3.4) with u and integrate; this gives

t t
1/211u(t) 1I+p*(A(u (t)))+O (w, u )V + (Ic(Uc)'u)v

* Eot

wher I/u0+u0  +p (A(Uo)) + (f,u ) 0 < t <T,

where cp (x)= sup{(x,)v-9(y): y c V) is the convex conjugate of p [1, p.41).

Since A is bounded, its domain is all of V so p(0) < -. Thus, we may take

9(0) 0 and tp (x) > 0, x c V, with no loss of generality. Since B is monotone

(t),u (t)v > (B 0(O),u(t)) for t c [0,T], where, e.g., B (0) c B(0) is the

minimal section of B at 0. Finally we may assume 0 e C ard thus

................................., .. -&L-. .
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from the definition of the subgradient. These observations and the preceding

estimate give

(l /L) Iju(t) 12<(1/)jvo1V+ AO + (11 f 11  +TIB (0)I1V)Ilu~II
V V-L(0, T;V) L'(0,T;V)

This implies that Hu llIL 0 (O,T;V) is bounded, and from (i) and (ii) it follows

11 1and IIA(u )IJL(oU are bounded uniformly in c > 0. Next, we

take the scalar product of (3.4) with u'(t) and integrate; this gives

s: ( d du
Ilu" I1 + d A (u) )V+ IC(u,(t))SO. 1 0dt d)-t )

(U)+ (I1 '" 11f 11 2l 'I
C 6L 2(0,T;V) L 2(O,T;V) L 2(O,T;V)

The monotonicity of A imp-lies-the second term above is non-negative so we deduce

that I~'J2and 1 1CF(u )II are bounded uniformly in E > 0.
L (0, TV)C

Case B =p: Take the scalar product of (3.4) with u'(t); this gives

I~u~(t)IIt + (~.A~), £t) WVt + ( t)u' (t))V (f(t)'U'(t))V

The second term is non-negative because A is monotone. The third term is the

derivative of 9(u (0))+11(u (t)) by the chain rule [1, p. 731. Thus we integrate
C CE

this identity and obtain

t 2
iiuv 1 + cp~u() + it(u (Q) (p(u) +IIuf1

SO E CcE0 (0,T;V) "EL 2(0,T;V)

& _ _ _ _ _.4_

.... ......
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We can add to B-p a constant, by adding the same to f(t), so we may add an

affine function to p with no loss of generality and thereby obtain ((x) > 0

for all x e V. The preceding estimate gives uniform bounds on II 2
L (O,T;V)

and 1II(u )I • Similar bounds follow immediately on IuL and by (i)
L L (0,T;V)

and (ii) on IIA(u)l( and 11w Ell , respectively.

L(O,T;U) L (0,T;V)

The limit. From the estimates obtained above it follows there is a subnet of fu )

(which we denote again by (u 1) for which

w-lim(uC) - u in H (0,T;V) , and

w-llm(wC) = w in L 2(O,T;V) ,

where "w-limr" denotes the weak limit.

Lemma 1. u e K"-(v e H1 (oT;V): v(t) e C, all t e [0,T]), u(O)=u 0  and

w-lim(u (t))-u(t) in V for every t e [O,T].

Proof: Let t > 0. For each x e V we have

t

(u (t)'u(t),x)v = So ((u'u)',x)v + (UOu(O),X)v

convergent to (u0-u(O),x)V• By bounded convergence

T T
lim so (U'u,X)v = 0 (u0-u(O),x)v 0

so u(0)= u0  and w-lim(u (t))=u(t). Next define z (t)= Pc(U C(t)), the
2

orthogonal projection onto C. Then (z is bounded in L (0,T;V) so there

2
is a subnet (z )which converges weakly to z in L (O,T;V). Note that
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Hlu (t-z (011 2 = 2e 1 C (U~ (t)) S (const.)c
C C C C 2

so w -lim(u )=u =z. Since the set (v e L (O,T;V): v(t) e C, a.e. t e C) contains

each zCand is weakly closed, it also contains u= z. Finally u e K follows since

C is closed and u is continuous.

Lemma 2. We have the (strong) limits lim A(u) =A(u) in L2(O,T;V) and

lim A(u C(t)) =A(u(t)) in V for every t £- [0,T].

Proof: Let t e [0,T). Since (A(u E(t))) is in a compact set in V there is a sub-

net [A(u t(t))) which converges (strongly) to v(t) in V. But w -lim(u t(t))= UMt

in V and A is maximal monotone so v(t)= A(u(t)). The above applies as well to

any subnet of (A(u C(t), so the entire net converges to A(u(t)). The convergence

in L 2(,T;V) of (A(u ))to A(u) follows by the bounded convergence theorem.

Lemna3. w eB(u) and lim(w C, U )L2 0TV=(wU)L20,;)

Proof : It suf fices to show that [ 1, p. 27]

(3.5) him sup (w6  U d L 2 <OTV (w, U) L2 0TV

Take the scalar product of (3.4) with u -u and integrate. From the estimate

we obtain

(w6 , + ( (u. +A (u.))u-u'~ + (f,u -u)(w 6 1 2  (weL u) d

L )
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By taking the upper limit we have

ir sup(w,, u,) 2 < (w,u) 2 +lim sup t(u+A(u )),u-u) 2

Thus it suffices to show the last term is non-positive. From the identity

(u U - 1/2(ju(T)Iv-IIVUoI v ) 0 (',

and Lemma 1 there follows

lim inf (u ' , u-u)v > 1/2(lu(T)IJ-Iu OII) -so (u,U)v f 0
00

Similarly from Lemma 2 and

T T
O (A(u),u-u)v= (Au (T),u (T)"u(T))v -So (A(u,),ue-u')v

T

it follows that lim S (A(u,,),u, -u)VaO.

The solution. To show that u is a weak solution, it suffices by Lemna 1 to verify

(3.1.b). For any I e K it follows from (3.4) that

(3.6) (u', T-u,) 2 + (A(u)',-u) 2 +(v,.fi-u) 2C )L (0, T;V) L (0, T;V) L (0,T;V)

L (0,T;V)

From the definition of subgradient it follows that the right side is greater than

I (u)- I"(1 ) . 1 ( u  hence, non-negative. Consider the first term on the left

side. We have from w-lia u (T) u(T) that
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(u', U) 2 ' (1/2) (lju(T)-IIuOIj2 ) < lir inf (1/2)(lu M(T)IV- 1Uo1[2 )

- lim inf (u; ,U ) 2 ,

so there follows

(Lv-,rT-u) +(u(T),r(T)-u(T))V - (u0 , (O)-U 0 )v = (u',1-u) 2> lin sup(u' , "u. L2•
LL

Concerning the second term, we obtain from Lemia 2

(L(Au),'I-u) + (A(u(T)),1(T)-u(T))v - (A(uO),i1(O)-uO)v

= lim(L(Au ),I-u€ ) + (A(u C()),j(T) -u€ ( V (A(u0 L 0)-u 0 )

- lim(A(u )',-Ud)L2 
SL(0, T ;V)

Finally, Lenma 3 identifies the limit of the third term, so by taking the "lir sup"

in (3.6) we obtain (3.l.b).

4. & Pseudo-Parabolic Inequality.

When our results from above are used to describe initial-boundary-value problems

for partial differentitl. equations or inequalities, it is usually more convenient to

express them in terms of the equivalent notion of a maximal monotone operator a

from the Hilbert V to its dual V*. Thus, letting 9t: V V be the Riesz iso-

morphism given by the scalar product,

ix (y) - (x,y)v x,yeV,

we say a C V x V is monotone if the composite operator Aw~t "1  is monotone in

VxV and maximal monotone if, in addition, Rg(9t+d) = V. We can easily state

Theorem 2, for example, in this context. Thus, we are given a set C closed and

,i, convex in V; 8 and S are maximal monotone operators from V to V satisfyiag

ifI~.
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hypotheses corresponding to (i), (ii) and (iii). Then for each u0 e C and

f e L 2(OT;V*) there is a pair of functions u,w satisfying

(4.l.a) u e K 5 (v 6 HI (o,T;V): v(t) £ C for 0 < t <T),

(4.l.b) V a L 2(0,T;V* ) , w(t) e S(u(t)) for a.e. t e [0,T]

(4.1.c) d(u) e L2(OT;V* ) and u(O) - u0

(4.l.d) (L(9+e)(u) +w-f,n-u) + (9+a)u(T)(n(T) -u (T))

> (+ a)uo(i0(O)-u(O)) , for T e K

In this setting the linear operator L: L 2(0,T;V* ) * H (0,T;V) *  is given by

(Lu) -s g(t)(u'(t))dt , g e (0,T;V) , U e H (0,T;V)

Since u e H1 (0,T;V), the inequality (4.1.d) is equivalent to

9dt u + Ld(u) + w- f, n -u) + d(u (T) ) (T (T) -u (T)) > (uO) ( (0) -u (0))

for n c K

We shall describe an example of a partial differential equation of pseudo-

parabolic type which is to be resolved subject to unilateral boundary constraints.

(A similar equation with constraint over the entire region will be given in the

next section.) Let C be a bounded open set in Rn which lies on one side of

its boundary 6G; assume aG consists of two disjoint parts r0  and r, and

let n(s)u I 1(s),...,nn(s)) be the unit outward normal at each point s e 3G.

(G) is the Sobolev space of those v ( L2(G) for which all derivatives
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6-- D V, 1 < j < n, belong to L 2 (G); we set Dov=v. Let V=(v e H (G):

vr 0); by vr0 we mean the trace of v on r. (see [8,10]). For v e V

we denote by y(v) e L2 (r) the trace of v on r. Let r0 c L(G) and

r e LC(r) be non-negative and define

(4.2) 9Ru(v) (uV)v=S DuDv+ruv rly(u)y(v) uv e VV S J=j J 0 3 +S

It follows by a compactness argument that (4.2) is equivalent to the usual 11l(G)

scalar-product if any one of P0  or (x: r0 (x) > 0) or (s: r1 (s) > 0) has

strictly positive measure, and we assume this hereafter.

The operator d is given by a pair of continuous (maximal) monotone functions

0 -: R + R which are linearly bounded:

IM j(z)I S Q(l + Iz) z eR J0,-1

for some constant Q > 0. We define

(4.3) d(u)(v) - SM0(U)V + S l(yu)yv , uv e V

This operator is a subgradient (in fact, a Cateux derivative) and is bounded from

2 2* *
V to U-L (G) xL (r). Since the imbeddings V c-+ U and U=U C_+ V are

compact, the hypothesis (i) is fulfilled.

The operator S will be specified by a family of maximal monotone operators

Pk: ] P. which are linearly bounded:

Iw_ Q(l +Iz-) for w j(z) z e R -1 < k < n
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for some Q > 0. Each kk=EK for a corresponding convex continuous 4k: R R.

We then define S =Np where

SGv 0 (P i(Dv Sr 9 1 (yv) , v C V

Thus 0 is given (formally) by

n .

(4.4) B(u) Z Dk 3k(Dku) + y i(Yu) , u e V
k-O

To be precise, we have F e S(u) if and only if there exist fk e Pk(DkU) in

L2(G). 0 : ., and f-1 a (Yu) in L2(r) for which

n

P:v) - Z fkDkv + S f-(V) , v v
G k-O r

by restricting each of the functionals R(u), d(u) and S(u) to test functions

C (G) we obtain the corresponding distributions over G
0

(4.5.a) %(U) = -6u + r0u

(4.5.b) do(u) - MO(U ,

(4.5.C) O(u) - -F, D4P(Dju) + p0 (U) U C V ,

where the multi-valued 20  is interpreted as before. The respective differences

are given (by Green's theorem for the first and last cases) for sufficiently regular

u by
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(4.6.a) tu (v) Souv Lu+r-uY

(4.6.b) d (u) (v) SG - S -1 (yu)yv

(4. 6. c) S (u) (v) -G %0(u)v F, 1 ~D u) n + (YuJ yv ,v C V

Thus we have realized the operators S, ( and $ as the sum of a distribution

over G (4.5) and a boundary part over r (4.6). See [5] for details.

The remaining data is given as follows. Let C- (v e V: y(v) > 0 a.e. on r)

and let u0 c C be specified. Suppose F0 e L2 (Gx [0,T]) and go e L2 (Px [0,T])

are given and define f a L2 (0,T;V * ) by

f(t)(v) - 5 Fo(.,t)v + , gO(,t)yv ' v C V .
SG Sr

With the preceding data as given, the solution u,w of (4.1) is a generalized

solution of the pseudo-parabolic problem

- o  in Gx(0,T)

u(x,0) - u0 (X), x CG,

(4.7)
ua 0 on r0 x[O,T

u > 0 , A(u) > 0 , A(u)(u) - 0 on rx (0,T]

where A is the boundary operator obtained from (4.6) as

(4.6) A(u) " + r ylu) + ct.(YU + n + 0-l(YU)

a- t -" I j l J . i i I
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The other operators in (4.7) are given by (4.5). Note specifically that the multi-

valued operators are to be interpreted precisely as was done above following (4.4).

5. A Stefan Problem.

We consider a problem of heat diffusion involving a solid-liquid phase change

at a prescribed temperature. One application we have in mind is the melting of ice

(initially at temperature zero) suspended in a reservoir or porous medium. The

novelty in this treatment is that we assume the heat diffusion is governed by the

pair of equations

Chen and Gurtin [3] introduced such a model for heat conduction in non-simple

materials where the energy, entropy, heat flux and thermodynamic temperature G(x,t)

depend on the conductive temperature p(xt) and its first two spatial gradients.

Here the heat flux is determined by the conductive temperature and the phase is de-

termined by the thermodynamic temperature. Thus 9 > 0 in the region occupied by

water and Q= 0 corresponds to the frozen region.

We describe the geometry of the problem. Let the bounded domain G in Rn

be the medium in which the ice/water is suspended and let its boundary 6G consist

as,' of two disjoint pieces, r 0 and r . Set fl -Gx (0,T), where T > 0, and note

that its lateral boundary is B U B,, where B =rx (0,T) for j=0,l. The

water-region A, = ((x,t) e Qi: Q(xt) > 0) is separated from the ice-region

M O=((x,t) e fl: Q(x,t)0O] by an interface S which is the phase boundary. The

unit outward normal on te is denoted by N- (N , N do Nf t) i

the velocity in R n of the interface at time t, then it follows by the chain
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rule that V(t).N +Nt -O on S. Set n=N /'N I1, the unit outward normal in n

of the lateral boundary of 1 Of course n=N x  on B1 and N x O where t-O

or tinT.

The problem is formulated as follows. We are given the conductivity k > 0,

temperature discrepancy a > 0, and latent heat b > 0, of the material and a

constant h > 0 representing conductivity across the lateral boundary B1 • The

initial thermodynamic temperature 00(x), x e G, and applied conductive termperature

g(x~t), (x,t) c B1 , are given with go= 0 on rO , go > 0 on P1, and g > 0.

The local form of the problem is to find a pair of non-negative functions Q,q0 on

a for which we have

(5.1.a) =kbp, -p -acp in n

(5.1.b)" k + bV(t)Th 0 On S

(5.1.c) kt + h(p-g) = 0 on r1

(5.1.d) 4- 0 on r0

(5.1.e) 0(',0) - 90  on G

Note that if Q,q is a solution of (5.1) and 00 > 0, then

(5.2) (a/k)- + a- in a

so it follovs that p-0 on D U S. Since g._ 0, the maximum principle for the

elliptic equation in (5.1.a) on the region G(t)= (x c G: (x,t) a a1)  shows that

cp > 0 in s1  andonE < 0 on S. Thus Nt < 0 on S and G(t) is increasing

with t.
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We shall show that the problem (5.1) leads to a variational inequality of the

form (1.1). Define V= (v e HI (G): vliO= 03 as before. Regarding regularity of

a solution, we assume 0  V, 0: [0,T] * V is absolutely continuous, p c LI (OT;V),

and (c.f. (5.2))

(53) a d9(t) + 9(t) = tp(t) , a.e. t e 10,T]
k dt

Define the continuous lir ear 9: V + V by

9tu(v) - k(Vu VV)dx + h(uv)ds , u,v e V

For a test function v e Co((O,T),V) we obtain

p(t)(v(t))dt 1 k 1
94(t(V~t) .3 k V(p -V v dxdt +3 hpv dsdt

Bso S

from (5.1). Furthermore we have

St Sa I t6t C v S H ( g) Ly I H ( I ) ( v )

1

in the sense of V -valued distributions, where H(s)- 1 for a > 0 and H(s) - 0

for a < 0 is the Heaviside function. We can summarize the above calculations as
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(5.4) (0 (+ bH (Q) + 9?sP= (gh)~ in L(0,T;V*)
dt

where we define

(hg) r(t)(v) = hg(s,t)v(s)ds , v 6 V , t e [0,T]
1 rP1

Combining (5.3) and (5.4) we find that the absolutely continuous function

0: [0,T] + V satisfies

(5.5.a) -L (9+(a/k)R(0) +bH(0))+ R(0) (gh)r in L1 (0,T;V*)•dtr

(5.5.b) 0(0) = 90 , and

(5.5.c) 0(xt) > 0 , a.e. x a G, t e [0,T]

If we integrate (5.5.a) and follow the suggestion in [71 to set

t
u(t) - (s)ds

t
f(t) (I+(a/k)gR+bH)0b 0 0 (hg)r 9

0 1O r,

there follows

dt
dt"(I + (a/k)gt)u + Ru - f (t) - b (1-H(G)).

Finally we note that H(u) - H() since G(t) is increasing in t, hence,

u(l-H(Q))=0 in f0.

The preceding computations show that u e H (oT;V) and it satisfies

u(O) - 0,
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(5.6.a) u(t) > 0 in V

(5.6.b) dt (R+ (k/a)I)u(t) + (k/a)gu(t) > f(t) in V* , and

(5.6.c) (R+ (kla)I)u(t) + (k/a)gRtu(t)-f(t (u(t)) = 0 , 0 < t < T

Setting C= (v V: v > 0 a.e. in G) we see that u is a strong solution of

(4.1) with d= (k/a)I, 5= (k/a)R, and uO0. Theorem I asserts the uniqueness

of a solution of (5.1) under conditions considerably weaker than those leading to

(5.6). Theorem 2 establishes the existence of a weak solution with certain

additional regularity properties. In particular du e H (0,T;V*) since d is

continuous and linear, so (4.1.d) is equivalent to

(f(tu +du) +w-f ,n-u)> 0, for e £ K

/t

V7.
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